pygot.tools.analysis.ProbabilityModel#
- class pygot.tools.analysis.ProbabilityModel(device=None)[source]#
Bases:
object
Probability model for pseudotime estimation
Example
#Assume the velocity are already fitted in pca space embedding_key = 'X_pca' velocity_key = 'velocity_pca' # Fit the probability model pm = pygot.tl.analysis.ProbabilityModel() history = pm.fit(adata, embedding_key=embedding_key, velocity_key=velocity_key) # Estimated pseudotime of cells adata.obs['pseudotime'] = pm.estimate_pseudotime(adata) # pseudotime adata.obs['var'] = pm.estimate_variance(adata) # variance of time
Methods
__init__
([device])Init model
estimate_pseudotime
(adata[, mode])estimate the pseudotime
estimate_variance
(adata)estimate the variance of pseudotime
fit
(adata, embedding_key, velocity_key[, ...])fit model
to
(device)- estimate_pseudotime(adata, mode='mean')[source]#
estimate the pseudotime
Arguments:#
- adata:
AnnData
Annotated data matrix.
- returns:
:math:`t^*|x` – pseudotime of cells
- rtype:
ndarray
- adata:
- estimate_variance(adata)[source]#
estimate the variance of pseudotime
Arguments:#
- adata:
AnnData
Annotated data matrix.
- returns:
var – variance of cell time
- rtype:
ndarray
- adata:
- fit(adata, embedding_key, velocity_key, n_neighbors=30, n_iters=500, mini_batch=True, batch_size=512)[source]#
fit model
Arguments:#
- adata:
AnnData
Annotated data matrix.
- embedding_key: str (default: None)
Name of latent space, in adata.obsm.
- velocity: str (default: None)
Name of latent velocity, in adata.obsm. Use to do variantional inference of conditonal time distribution if it offers.
- time_key: str (default: None)
Name of time label, in adata.obs. Use as addition information for conditonal time distribution fitting if it offers.
- n_neighbors: int (default: 30)
Number of neighbors of cell
- n_iters: float (default: 500)
Number of training iterations
- mini_batch: bool (default: True)
Use mini-batch training or not
- batch_size: int (default: 512)
Number of batch size
- adata: