pygot.tools.traj.fit_velocity_model_without_time#
- pygot.tools.traj.fit_velocity_model_without_time(adata, embedding_key, precomputed_pseudotime=None, kernel='dpt', connect_anchor=True, split_m=30, single_branch_detect=True, cytotrace=True, cell_type_key=None, plot=False, basis='umap', device=None, **kwargs)[source]#
Estimates velocities and fit trajectories in latent space WITHOUT time label.
Arguments:#
- adata:
AnnData
Annotated data matrix.
- embedding_key: `str’
Name of latent space to fit, in adata.obsm
- precomputed_pseudotime: str (default: None)
Name of precomputed pseudotime (in adata.obs), if offers, skip the searching of source cell and use precomputed time as time label to train model
- kernel: ‘dpt’ or ‘palantir’ or ‘euclidean’ (default: ‘dpt’)
Pseudotime method, ‘dpt’ is recommended
- connect_anchor: bool (default: False)
Use extrema in diffusion map space to connect the whole graph
- split_m: int (default: 30)
Number of split. This number should NOT be too small
- single_branch_detect: bool (default: True)
Auto detect single branch so that auto determine use ct_root or ot_ct_root as source cell
- cytotrace: bool (default: True)
Use cytotrace to help. Note cytorace is implemented by Cellrank2
- cell_type_key: str (default: None)
Cell cluster name, in adata.obs.
- plot: bool (default: False)
Plot the intermediate process
- basis: str (default: ‘umap’)
Visualization space
- device:
device
torch device
- kwargs:
parameter of pygot.tl.traj.fit_velocity_model
- returns:
model (:class`~ODEwrapper`) – velocity model
ot_root (.uns) (int) – best source cell index using transport cost only
ot_ct_root (.uns) (int) – best source cell index using both transport cost and cytotrace
root_score (.obs) (np.ndarray) – source cell score (higher score higher probability to be source)
ot_root_score (.obs) (np.ndarray) – source cell score + alpha * cytotrace score (higher score higher probability to be source)
expectation (.obs) (np.ndarray) – updated time
- adata: