pygot.preprocessing.GS_VAE#
- class pygot.preprocessing.GS_VAE(device=None)[source]#
Bases:
object
Dimension reduction model
Non-linear dimension reduction model (based on VAE)
This model contains normal VAE model and Gene Set augmented VAE model (GS-VAE)
Example:#
To use VAE:
vae = pygot.pp.gs_vae() vae.register_model(adata, latent_dim=10) adata.obsm['X_latent'] = vae.fit_transform(adata)
To use GS-VAE:
gs_vae = pygot.pp.gs_vae() auc_space = gs_vae.precompute_gs(adata, gene_set_book_paths, mouse=False) # compute gene set score by AUCell adata = gs_vae.process_gs(adata, auc_space) # process gene set score into adata gs_vae.register_model(adata, latent_dim=10) adata.obsm['X_latent'] = gs_vae.fit_transform(adata) denoised_gs = gs_vae.pred_gs_using_z(adata.obsm['X_latent']) # predict denoised gene set score
Warning
The GS-VAE is not suggested to use because it still under developing.
Methods
__init__
([device])fit
(adata[, lr, batch_size, n_epoch])fit_transform
(adata[, lr, batch_size, n_epoch])inverse_transform
(x_latent)precompute_gs
(adata, gene_set_book_paths[, ...])pred_gs_using_z
(x_latent)process_gs
(adata, auc_space[, c_filter, ...])register_model
(adata, latent_dim[, lam, ...])transform
(adata)